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A brief overview for this class...

Who am I? Statistician working in biostatistics at INRAE Toulouse
My research interests are: data mining, network inference and
mining, machine learning

Purpose of this talk: presenting a few statistical tools for graph
mining (graph structure, important vertices) and clustering
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Outline

A brief introduction to networks/graphs

Visualization

Global characteristics

Numerical characteristics calculation
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What is a network/graph?
Mathematical object used to model relational data between
entities.

A relation between two entities is modeled by an edge
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What is a network/graph?
Mathematical object used to model relational data between
entities.

The entities are called the nodes or the vertices

A
relation between two entities is modeled by an edge
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Where does graph theory come from?
Seven Bridges of Königsberg: notable problem in mathematics.
Königsberg set on both sides of the Pregel River and included two
large islands.
Question: Is there a walk through the city that crosses each bridge
once and only once?

Image: Public Domain. CC BY-SA 3.0.

Leonhard Euler proved that the problem has no solution using a
mathematical proof which was the starting point of graph theory.
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Examples of networks

Social networks:

Credits: Frauhoelle (CC BY-SA 2.0) and Caseorganic (CC BY-NC 2.0) on flickr
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Examples of networks

Blog co-citations and internet routes:

Credits: Porternovelli on flikr (CC BY-SA 2.0) and Matt Britt on wikimedia commons (CC BY 2.5)
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Examples of networks

Consumers/products graphs or co-purchase networks:

Credits: Loop© and http://www.annehelmond.nl
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Examples of networks
(biological) Neural networks:

Credits: Soon-Beom et al. (CC BY-SA 3.0) and Andreashorn (CC BY-SA 4.0) on wikimedia commonsNathalie Vialaneix | Graph mining 6/30



Examples of networks
Ingredient networks... and many others!

Credits: http://www.ladamic.com
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More complex relational models

Vertices...

can be labelled with a factor or a numeric variables or several
variables (caracteristics attached to the entities in relation)

Edges...

I can be oriented
I can be weighted
I can be described by numerical attributes or factors

(caracteristics attached to the relation)
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Many applications...

I Viral marketing: find a way to efficiently spread the information
about a new product using social network informations

I Recommandation systems: recommand a product to
someone based on his/her previous purchase and
co-purchase information

I Biological network: acquire knowledge about biological
networks (genes, metabolomic pathway...) in order to
understand diseases associated with disfunctionning

I ...
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Standard issues associated with networks
Inference

Giving data, how to build a graph whose edges represent the direct
links between variables?
Example: co-expression networks built from microarray data (vertices = genes;
edges = significant “direct links” between expressions of two genes)

Graph mining (examples)

1. Network visualization: vertices are not a priori associated to a
given position. How to represent the network in a meaningful
way?

2. Network clustering: identify “communities” (groups of vertices that

are densely connected and share a few links with the other groups)

Nathalie Vialaneix | Graph mining 9/30



Standard issues associated with networks
Inference

Giving data, how to build a graph whose edges represent the direct
links between variables?

Graph mining (examples)

1. Network visualization: vertices are not a priori associated to a
given position. How to represent the network in a meaningful
way?

Random positions or positions aiming at representing
connected vertices closer.

2. Network clustering: identify “communities” (groups of vertices that
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Notations for this class

Notations

In the following, a graph G = (V ,E,W) with:
I V : set of vertices {x1, . . . , xn};
I E: set of (undirected) edges. m = |E |;
I W : weights on edges s.t. Wij ≥ 0, Wij = Wji and Wii = 0.

If needed, attributes for the vertices will be denoted by fj(xi) (jth
attribute for vertex i) and attributes for the edges (other than the
weights) by gj(xi , xi′) (jth attribute for the edge (xi , xi′)).
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Online graph datasets and ressources

I Mark Newman’s collection:
http://www-personal.umich.edu/~mejn/netdata

I Stanford Large Network Dataset Collection (SNAP):
http://snap.stanford.edu/data

I KONECT collection (Koblenz university):
http://konect.uni-koblenz.de/networks

I Colorado Index of Complex Networks (ICON):
https://icon.colorado.edu

Online course: http://barabasi.com/networksciencebook
(Alberto Barabasi)
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Mining graphs/networks

I Visualizing and manipulating graphs in an interactive way:
Gephi https://gephi.org, Tulip http://tulip.labri.fr
or Cytoscape http://cytoscape.org;

I Packages/librairies in data mining languages:
I for Python: igraph, NetworkX and graph-tool
I for R: igraph, statnet, bipartite and tnet. See also the CRAN

task view:
https://cran.r-project.org/web/views/gR.html
(graphical models)
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Special graphs
Full graphs

A full graph with vertices
V = {x1, . . . , xn} is the
graph with edge list
E = {(xi , xj) : xi , xj ∈ V}
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Bipartite graphs
A graph with vertices
V = {x1, . . . , xn} partitionned into
two groups {xi : f(xi) = 1} and
{xi : f(xi) = −1} and such that
edges are a subset of {(xi , xj) :
f(xi) = 1 and f(xj) = −1} (e.g.,
purchase network)
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Most standard ways to record a graph

I adjacency matrix: matrix W if the network is weighted or

Aij =

{
1 if (xi , xj) ∈ E
0 otherwise

if it is unweighted.

requires to store n2 values

I edge list: matrix B of dimension m × 2 (unweighted network)
or m×3 (weighted network), Bk . = (xi , xj ,Wij) for a (xi , xj) ∈ E.
requires to store 3m values

Since usually m � n2, the second solution is often prefered.

Other standard formats (readable by interactive software and
allowing metadata) such as graphml (a graph version of XML)
http://graphml.graphdrawing.org
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Running example 1 “GOT”
“Game of Thrones” coappearances network: weighted and
undirected network with 107 vertices corresponding to unique
characters and 353 edges weighted by the number of times the
two characters’ names appeared within 15 words of each other in
the Game of Thrones series by George R.R. Martin.

Reference: [Beveridge and Shan, 2016]

http://www.jstor.org/stable/10.4169
Dataset available at: http:
//www.macalester.edu/~abeverid/data/stormofswords.csv
(edgelist format)
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Running example 1 “GOT”
“Game of Thrones” coappearances network
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Running example 2 “NVV”
my facebook network (extracted from facebook in 2015) with 152
vertices (my friends on facebook) and 551 edges (mutual
friendship between my friends)

Dataset available at: http:
//www.nathalievialaneix.eu/doc/txt/fbnet-el-2015.txt
(edge list) and http://www.nathalievialaneix.eu/doc/txt/
fbnet-name-2015.txt (metadata -initials- for the vertices)
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Running example 2 “NVV”
my facebook network (extracted from facebook in 2015)
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Running example 3 “FB”
Amherst College https://www.amherst.edu facebook network :
Snapshots of within-college social networks of the first 100
colleges and universities admitted to thefacebook.com, in
September 2005. Vertices are annotated with metadata giving the
type of account (student, faculty, alumni, etc.), dorm, major,
gender, and graduation year (2,235 vertices and 90,954 edges).

Reference: [Traud et al., 2012] http://arxiv.org/abs/1102.2166
Dataset available at:
https://escience.rpi.edu/data/DA/fb100 (Matlab© format;
adjacency matrix + data frame with information on vertices: 7
columns)
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Running example 3 “FB”
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Connected component
The graph is said to be connected if any vertex can be reached
from any other vertex by a path along the edges.
The connected components of a graph are all its connected
subgraphs with maximum sizes.

Examples: GOT and FB are connected graphs. NVV is not
connected and contains 21 connected components, among which
the largest has 122 vertices.
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Outline

A brief introduction to networks/graphs

Visualization

Global characteristics

Numerical characteristics calculation
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Visualization tools help understand the graph
macro-structure

Purpose: How to display the vertices in a meaningful and aesthetic
way?

Standard approach: force directed placement algorithms (FDP)
(e.g., [Fruchterman and Reingold, 1991])

I attractive forces: similar to springs along the edges
I repulsive forces: similar to electric forces between all pairs of

vertices

iterative algorithm until stabilization of the vertex positions.
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Visualization software
I package igraph1 [Csardi and Nepusz, 2006] (static

representation with useful tools for graph mining)

I free software Gephi2 (interactive software, supports
zooming and panning)

1
http://igraph.sourceforge.net/

2
http://gephi.org
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Density / Transitivity
Density: Number of edges divided by the number of pairs of
vertices. Is the network densely connected?

Transitivity (sometimes called clustering coefficient): Number of
triangles divided by the number of triplets connected by at least
two edges. What is the probability that two people with a common
friend are also friends?

Examples

Example 1: GOT
I density ' 6.2%, transitivity ' 32.9%.

Example 2: NVV
I density ' 4.8%, transitivity ' 56.2%;
I LCC: density ' 7.2%, transitivity ' 56%.

Example 3: FB
I density ' 3.6%, transitivity ' 23.3%.
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Density / Transitivity
Density: Number of edges divided by the number of pairs of
vertices. Is the network densely connected?

Examples

Example 1: GOT
I 107 vertices, 352 edges⇒ density = 352

107×106/2 ' 6.2%.

Example 2: NVV
I 152 vertices, 551 edges⇒ density ' 4.8%;
I largest connected component: 122 vertices, 535 edges⇒

density ' 7.2%.

Example 3: FB
I 2235 vertices, 9.0954 × 104 edges⇒ density ' 3.6%.

Transitivity (sometimes called clustering coefficient): Number of
triangles divided by the number of triplets connected by at least
two edges. What is the probability that two people with a common
friend are also friends?

Examples
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Density / Transitivity
Density: Number of edges divided by the number of pairs of
vertices. Is the network densely connected?
Transitivity (sometimes called clustering coefficient): Number of
triangles divided by the number of triplets connected by at least
two edges. What is the probability that two people with a common
friend are also friends?

Density is equal to 4
4×3/2 = 2/3 ; Transitivity is equal to 1/3.

Examples
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Diameter and 6 degrees of separation
Diameter (of a connected graph): length of the longest shortest
path between two vertices in the graph.
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Diameter and 6 degrees of separation
Diameter (of a connected graph): length of the longest shortest
path between two vertices in the graph.

6 degrees of separation

From a volume of novels by Frigyes Karinthy: all living things and
everything else in the world is six or fewer steps away from each
other (i.e., a chain of “a friend of a friend” statements can be made
to connect any two people in a maximum of six steps).
Hypothesis tested by Milgram with a letter chain (1967): ' 2 − 10
intermediates to reach a target person from any starting people
(known as the “small world experiment”).
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Diameter and 6 degrees of separation
Diameter (of a connected graph): length of the longest shortest
path between two vertices in the graph.

Examples of diameter

Example 1: GOT diameter = 6 (unweighted) and 85 (weighted)
Example 2: NVV diameter in LCC: 18
Example 3: FB diameter = 7
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Diameter and 6 degrees of separation
Diameter (of a connected graph): length of the longest shortest
path between two vertices in the graph.

0

500

1000

1500

2000

2 4 6

shortest path length

co
un

t

shortest path length distribution − GOT (unweighted)

0e+00

5e+05

1e+06

2 4 6

shortest path length

co
un

t

shortest path length distribution − FB

Nathalie Vialaneix | Graph mining 24/30



Diameter and 6 degrees of separation
Diameter (of a connected graph): length of the longest shortest
path between two vertices in the graph.
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Diameter and 6 degrees of separation
Diameter (of a connected graph): length of the longest shortest
path between two vertices in the graph.
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Diameter and 6 degrees of separation
Diameter (of a connected graph): length of the longest shortest
path between two vertices in the graph.

0e+00

5e+05

1e+06

2 4 6

shortest path length

co
un

t

shortest path length distribution − FB

Nathalie Vialaneix | Graph mining 24/30



girth, cohesion

I girth: number of vertices in the shortest circle (equal to 3 if
transitivity is not equal to 0)

I cohesion (of a connected graph): minimum number of vertices
to remove in order to disconnect the graph

Examples

Example 1: GOT girth = 3 and cohesion = 1
Example 2: NVV girth = 3 and cohesion = 1
Example 3: FB girth = 3 and cohesion = 1
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Examples
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Visualization
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Extracting important vertices: hubs
vertex degree: number of edges adjacent to the vertex∣∣∣{xj : (xi , xj) ∈ E, j , i}

∣∣∣. The weighted version
∑

j,i Wij is called the
strength.
Vertices with a high degree are called hubs: measure of the vertex
popularity.

degrees

Jaime
Tyrion

Tywin

Jon

Robb
Sansa

(unweighted)

degrees
V222 456

V1423 467
V1700 467

(degree larger than 400)
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Extracting important vertices: hubs
vertex degree: number of edges adjacent to the vertex∣∣∣{xj : (xi , xj) ∈ E, j , i}

∣∣∣. The weighted version
∑

j,i Wij is called the
strength.
Vertices with a high degree are called hubs: measure of the vertex
popularity.

degrees
Jaime 24
Tyrion 36
Tywin 22

Jon 26
Robb 25

Sansa 26

(degree larger than 20)

degrees
V222 456

V1423 467
V1700 467

(degree larger than 400)

Nathalie Vialaneix | Graph mining 27/30



Extracting important vertices: hubs
vertex degree: number of edges adjacent to the vertex∣∣∣{xj : (xi , xj) ∈ E, j , i}

∣∣∣. The weighted version
∑

j,i Wij is called the
strength.
Vertices with a high degree are called hubs: measure of the vertex
popularity.

strength

Tyrion

Jon

(weighted)

degrees
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Extracting important vertices: hubs
vertex degree: number of edges adjacent to the vertex∣∣∣{xj : (xi , xj) ∈ E, j , i}

∣∣∣. The weighted version
∑

j,i Wij is called the
strength.
Vertices with a high degree are called hubs: measure of the vertex
popularity.

S.L

M.P

V.G

N.E

Hubs (degree larger than 25) are two students who have been kept
back one year at school.

degrees
V222 456

V1423 467
V1700 467

(degree larger than 400)
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vertex degree: number of edges adjacent to the vertex∣∣∣{xj : (xi , xj) ∈ E, j , i}

∣∣∣. The weighted version
∑

j,i Wij is called the
strength.
Vertices with a high degree are called hubs: measure of the vertex
popularity.

degrees
S.L 31

M.P 29
V.G 27
N.E 27

(degree larger than 25)
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vertex degree: number of edges adjacent to the vertex∣∣∣{xj : (xi , xj) ∈ E, j , i}

∣∣∣. The weighted version
∑

j,i Wij is called the
strength.
Vertices with a high degree are called hubs: measure of the vertex
popularity.
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Extracting important vertices: hubs

vertex degree: number of edges adjacent to the vertex∣∣∣{xj : (xi , xj) ∈ E, j , i}
∣∣∣. The weighted version

∑
j,i Wij is called the

strength.
Vertices with a high degree are called hubs: measure of the vertex
popularity.

degrees
V222 456

V1423 467
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(degree larger than 400)
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Degree distribution

In real graphs (WWW, social networks...), the degree distribution is
often found to fit a power law: P(degree = k) ∼ k−γ for a γ > 0.
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Degree distribution

In real graphs (WWW, social networks...), the degree distribution is
often found to fit a power law: P(degree = k) ∼ k−γ for a γ > 0.
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Degree distribution

In real graphs (WWW, social networks...), the degree distribution is
often found to fit a power law: P(degree = k) ∼ k−γ for a γ > 0.
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Degree distribution

In real graphs (WWW, social networks...), the degree distribution is
often found to fit a power law: P(degree = k) ∼ k−γ for a γ > 0.
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Extracting important vertices: betweenness
vertex betweenness: number of shortest paths between all pairs of
vertices that pass through the vertex. Betweenness is a centrality
measure indicating which vertices are the most important to
connect the network.

Robert

Tyrion

betweenness degree
V177 30797 253
V222 30649 456
V340 49127 299

V1173 30778 313
V1423 60272 467
V1700 37868 467

(betweenness larger than 30,000; hubs had a degree larger than
400)
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Extracting important vertices: betweenness
vertex betweenness: number of shortest paths between all pairs of
vertices that pass through the vertex. Betweenness is a centrality
measure indicating which vertices are the most important to
connect the network.

betweenness degree
Robert 1166 18
Tyrion 1164 36

(betweenness larger than 1000; hubs had a degree larger than 20)
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Extracting important vertices: betweenness
vertex betweenness: number of shortest paths between all pairs of
vertices that pass through the vertex. Betweenness is a centrality
measure indicating which vertices are the most important to
connect the network.

B.M

L.F

Vertices with largest betweenness (larger than 3000) are public
figures.

betweenness degree
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Extracting important vertices: betweenness
vertex betweenness: number of shortest paths between all pairs of
vertices that pass through the vertex. Betweenness is a centrality
measure indicating which vertices are the most important to
connect the network.

betweenness
B.M 3439
L.F 3146

betweenness degree
V177 30797 253
V222 30649 456
V340 49127 299

V1173 30778 313
V1423 60272 467
V1700 37868 467

(betweenness larger than 30,000; hubs had a degree larger than
400)
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Extracting important vertices: betweenness
vertex betweenness: number of shortest paths between all pairs of
vertices that pass through the vertex. Betweenness is a centrality
measure indicating which vertices are the most important to
connect the network.

V177

V222V340V1173
V1423

V1700

betweenness degree
V177 30797 253
V222 30649 456
V340 49127 299

V1173 30778 313
V1423 60272 467
V1700 37868 467

(betweenness larger than 30,000; hubs had a degree larger than
400)
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measure indicating which vertices are the most important to
connect the network.

betweenness degree
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Other centrality measure: eccentricity and closeness
vertex eccentricity: shortest path length from the farthest other
vertex in the graph (the smallest eccentricity is the radius)
vertex closeness: inverse of the average length of the shortest
paths from this vertex to all the other vertices in the graph:

1∑
j,i spl(i,j)

eccentricity closeness

betweenness

Radius

Example 1: GOT radius = 3
Example 2: NVV radius in LCC: 9
Example 3: FB radius = 4
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vertex eccentricity: shortest path length from the farthest other
vertex in the graph (the smallest eccentricity is the radius)
vertex closeness: inverse of the average length of the shortest
paths from this vertex to all the other vertices in the graph:

1∑
j,i spl(i,j)

Radius

Example 1: GOT radius = 3
Example 2: NVV radius in LCC: 9
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