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A typical transcriptomic experiment
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Steps in RNAseq data analysis

Biostatistique RNA-seq
Toulouse, 16-17 mai 2024 / NV2

p. 5



Part I: Experimental design
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Confounded effects: a simple example
Basic experiment: find differences between control/treated plants

control group plant treated group plant

In summary, what is a good experimental design?
Experimental design are usually not as simple as this example: they can include
multiple experimental factors (day of experiment, flow cell, . . . ) and multiple covariates
(sex, parents, . . . ).

⇒ The experimental design must be carefully thought before starting the experiment
and confounded effects must be searched for in a systematic manner.
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Confounded effects: a simple example
Basic experiment: find differences between control/treated plants

control group plant treated group plant

A bad experimental design: grow all control group plants in one field and grow all
treated group plants in another field

 Field 1  Field 2

differences due to the field / the treatment can not be distinguished⇒ confounded
effects

In summary, what is a good experimental design?
Experimental design are usually not as simple as this example: they can include
multiple experimental factors (day of experiment, flow cell, . . . ) and multiple covariates
(sex, parents, . . . ).
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Confounded effects: a simple example
Basic experiment: find differences between control/treated plants

control group plant treated group plant

A good experimental design: grow half control group plants (chosen at random) and
half treated group plants in one field (and the rest in the other field)

 Field 1  Field 2

differences due to the field / the treatment can be estimated separately

In summary, what is a good experimental design?
Experimental design are usually not as simple as this example: they can include
multiple experimental factors (day of experiment, flow cell, . . . ) and multiple covariates
(sex, parents, . . . ).

⇒ The experimental design must be carefully thought before starting the experiment
and confounded effects must be searched for in a systematic manner.
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Effect & Variation

2 conditions, 2 genes whose expression
distribution is:

▶ first gene: different median levels
between the two groups but large
variance: differences may be non
significant

▶ second gene: different median levels
between the two groups but very small
variance: differences may be
significant
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Source of variation in RNA-seq experiments

1. at the top layer: biological variations (i.e., individual differences
due to e.g., environmental or genetic factors)

2. at the middle layer: technical variations (library preparation
effect)

3. at the bottom layer: technical variations (lane and cell flow
effects)

lane effect < cell flow effect < library preparation effect≪ biological effect⇒ 2 × 3
biological replicates at least [Liu et al., 2014]
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Part II: Exploratory analysis
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Some features of RNAseq data

What must be taken into account?
▶ discrete, non-negative data (total number of aligned reads)

▶ skewed data
▶ overdispersion (variance≫ mean)
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Some features of RNAseq data

What must be taken into account?
▶ discrete, non-negative data (total number of aligned reads)
▶ skewed data
▶ overdispersion (variance≫ mean)

black line is “variance = mean”

Biostatistique RNA-seq
Toulouse, 16-17 mai 2024 / NV2

p. 11



Dataset used in the examples

Dataset provided by courtesy of the transcriptomic platform of IPS2
Three files:
▶ D1-counts.txt contains the raw counts of the experiment (13 columns: the first

one contains the gene names, the others correspond to 12 different samples;
gene names have been shuffled);

▶ D1-genesLength.txt contains information about gene lengths;
▶ D1-targets.txt contains information about the sample and the experimental

design.
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Dataset used in the examples

These text files are loaded with:

raw_counts <- read.table("D1-counts.txt", header = TRUE,
row.names = 1)

raw_counts <- as.matrix(raw_counts)
design <- read.table("D1-targets.txt", header = TRUE,

stringsAsFactors = FALSE)
gene_lengths <- scan("D1-genesLength.txt")
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Count distribution
The count distribution (i.e., the number of times a given count is obtained in the data)
can be visualized with histograms (boxplots or violin plots can also be used):

This distribution is highly skewed and it is better visualized using a log2 transformation
before it is displayed.

The library size is the sum of all counts in a given sample.
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Count distribution between samples
The count distribution between different samples can be compared with parallel
boxplots or violin plots:

It is expected that, within a given condition (group), the count distributions are similar.
The same is often also expected between conditions.
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Check reproducibility between samples
MA plots can be used to visualize reproducibility between samples of an experiment
(and thus check if normalization is needed). They plot the log-fold change (M-values)
against the log-average (A-values):

M-values: log of ratio between counts
between two samples:

Mg = log2(Kgj) − log2(Kgj′)

A-values: average log counts between two
samples:

Ag =
log2(Kgj) + log2(Kgj′)

2

where Kgj stands for the counts for gene g in sample j.
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Check reproducibility between samples
MA plots can be used to visualize reproducibility between samples of an experiment
(and thus check if normalization is needed). They plot the log-fold change (M-values)
against the log-average (A-values):
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Check similarity between samples
Similarities between samples can be visualized with a HAC and a heatmap:
▶ perform hierarchical ascending classification (HAC) using Euclidean distance

between samples: δ(j, j′) =
∑

g

(
log2(Kgj) − log2(Kgj′)

)2

▶ visualize the strength of the similarity with heatmap.
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Search for the main structures in the data: PCA
PCA (on log2 counts) can be used to project data into a small dimensional space and
search for unexpected experimental effects in the data.

(MDS is equivalent to PCA when used with the standard Euclidean distance)
Remark: In DESeq, the function plotPCA performs PCA on the top genes with the
highest variance.
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Raw data filtering
Filtering consists in removing genes with low expression. Different strategies can be
used:
▶ [Sultan et al., 2008]: filter out genes with a total read count smaller than a given

threshold;
▶ [Bottomly et al., 2011]: filter out genes with zero count in an experimental

condition;
▶ [Robinson and Oshlack, 2010]: filter out genes such that the number of samples

with a CPM value (for this gene) smaller than a given threshold is larger than the
smallest number of samples in a condition. With CPM: Count Per Million (i.e., raw
count divived by library size, this strategy takes into account differences in library
sizes).

More sophisticated filtering
To account for the fact that lowly expressed genes are almost never found differentially
expressed, a more sophisticated filtering can be performed.
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count divived by library size, this strategy takes into account differences in library
sizes).

More sophisticated filtering
To account for the fact that lowly expressed genes are almost never found differentially
expressed, a more sophisticated filtering can be performed.

Biostatistique RNA-seq
Toulouse, 16-17 mai 2024 / NV2

p. 20



Part III: Normalization
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Purpose of normalization

▶ identify and correct technical biases (due to sequencing process) to make counts
comparable

▶ types of normalization: within sample normalization and between sample
normalization
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Within sample normalization
Example: (read counts)

sample 1 sample 2 sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts for gene B are twice larger than counts for gene A because:

▶ Purpose of within sample comparison: enabling comparisons of genes from a
same sample

▶ Sources of variability: gene length, sequence composition (GC content)
These differences need not to be corrected for a differential analysis and are not really
relevant for data interpretation.
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counts for gene B are twice larger than counts for gene A because:

▶ gene B is expressed with a number of transcripts twice larger than gene A

gene A gene B

▶ Purpose of within sample comparison: enabling comparisons of genes from a
same sample

▶ Sources of variability: gene length, sequence composition (GC content)
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Within sample normalization
Example: (read counts)

sample 1 sample 2 sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts for gene B are twice larger than counts for gene A because:

▶ both genes are expressed with the same number of transcripts but gene B is twice
longer than gene A

gene A gene B

▶ Purpose of within sample comparison: enabling comparisons of genes from a
same sample

▶ Sources of variability: gene length, sequence composition (GC content)
These differences need not to be corrected for a differential analysis and are not really
relevant for data interpretation.
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Within sample normalization

▶ Purpose of within sample comparison: enabling comparisons of genes from a
same sample

▶ Sources of variability: gene length, sequence composition (GC content)

These differences need not to be corrected for a differential analysis and are not really
relevant for data interpretation.
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Between sample normalization
Example: (read counts)

sample 1 sample 2 sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

▶ Purpose of between sample comparison: enabling comparisons of a gene in
different samples

▶ Sources of variability: library size, ...
These differences must be corrected for a differential analysis and for data
interpretation.
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Between sample normalization
Example: (read counts)

sample 1 sample 2 sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

▶ gene A is more expressed in sample 3 than in sample 2

gene A in sample 2 gene A in sample 3

▶ Purpose of between sample comparison: enabling comparisons of a gene in
different samples

▶ Sources of variability: library size, ...
These differences must be corrected for a differential analysis and for data
interpretation.
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Between sample normalization
Example: (read counts)

sample 1 sample 2 sample 3
gene A 752 615 1203
gene B 1507 1225 2455

counts in sample 3 are much larger than counts in sample 2 because:

▶ gene A is expressed similarly in the two samples but sequencing depth is larger in
sample 3 than in sample 2 (i.e., differences in library sizes)

gene A in sample 2 gene A in sample 3

▶ Purpose of between sample comparison: enabling comparisons of a gene in
different samples

▶ Sources of variability: library size, ...
These differences must be corrected for a differential analysis and for data
interpretation.
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Between sample normalization

▶ Purpose of between sample comparison: enabling comparisons of a gene in
different samples

▶ Sources of variability: library size, ...

These differences must be corrected for a differential analysis and for data
interpretation.
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Principles for sequencing depth normalization

Basics
1. choose an appropriate baseline for each sample

2. for a given gene, compare counts relative to the baseline rather than raw counts

Consequences: Library sizes for normalized counts are roughly equal.

control treated

Gene 1 5.5 1.6 0 0 5.6 0 0

Gene 2 0 3.2 0.6 1.4 1.4 0 0

Gene 3 101.2 257.6 45.6 49 196 61.6 56

: : :

: : :

: : :

Gene G 16.5 40 5.4 5.5 28 9.8 13.6

  +
Lib. size 13.1 13.0 13.2 13.1 13.2 13.0 13.1 x 105

Definition
If Kgj is the raw count for gene g in sample j then, the normalized counts is defined as:

K̃gj =
Kgj

sj × Dj
× 106

in which: Dj =
∑

g Kgj is the library size of sample j, sj is the correction factor of the

library size for sample j and thus Cj =
106

sjDj
.
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2. for a given gene, compare counts relative to the baseline rather than raw counts

In practice: Raw counts correspond to different sequencing depths

control treated
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Gene 2 0 2 1 2 1 0 0
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Gene G 15 25 9 5 20 14 17
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Principles for sequencing depth normalization

Basics
1. choose an appropriate baseline for each sample

2. for a given gene, compare counts relative to the baseline rather than raw counts

In practice: A correction multiplicative factor is computed for every sample
control treated
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Gene 2 0 2 1 2 1 0 0

Gene 3 92 161 76 70 140 88 70

: : :

: : :

: : :
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1.1 1.6 0.6 0.7 1.4 0.7 0.8Cj   
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Principles for sequencing depth normalization

Basics
1. choose an appropriate baseline for each sample

2. for a given gene, compare counts relative to the baseline rather than raw counts

In practice: Every counts is multiplied by the correction factor corresponding to its
sample

Gene 3 92 161 76 70 140 88 70

1.1 1.6 0.6 0.7 1.4 0.7 0.8
  x

Gene 3 101.2 257.6 45.6 49 196 61.6 56

Cj   

Consequences: Library sizes for normalized counts are roughly equal.
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Principles for sequencing depth normalization

Definition
If Kgj is the raw count for gene g in sample j then, the normalized counts is defined as:

K̃gj =
Kgj

sj × Dj
× 106

in which: Dj =
∑

g Kgj is the library size of sample j, sj is the correction factor of the
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Distribution adjustment
▶ Total read count adjustment [Mortazavi et al., 2008]

sj = 1 and thus: K̃gj =
Kgj

Dj
× 106

(Counts Per Million).

raw counts normalized counts
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edgeR:

cpm(...,
normalized.lib.sizes=FALSE)
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Distribution adjustment
▶ Total read count adjustment [Mortazavi et al., 2008]
▶ (Upper) Quartile normalization [Bullard et al., 2010]

sj =
Q(p)

j

1
N

∑N
l=1 Q(p)

l

N: number of samples, Q(p)
j : quantile in sample j
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0

5

10

15

20

0 250 500 750 1000 0 250 500 750 1000

rank(mean) gene expression

lo
g 2

(c
ou

nt
 +

 1
)

Samples

Sample 1

Sample 2

raw counts normalized counts

0

5

10

15

20

0 250 500 750 1000 0 250 500 750 1000

rank(mean) gene expression

lo
g 2

(c
ou

nt
 +

 1
)

Samples

Sample 1

Sample 2

edgeR:
calcNormFactors(..., method = "upperquartile",
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Method using gene lengths (intra & inter sample
normalization)

RPKM: Reads Per Kilobase per Million mapped Reads

Assumptions: read counts are proportional to expression level, transcript length and
sequencing depth

sj =
DjLg

103 × 106

in which Lg is gene length (bp).

edgeR:

rpkm(..., gene.length = ...)

Unbiaised estimation of number of reads but affect variability
[Oshlack and Wakefield, 2009].
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Relative Log Expression (RLE)
Method:

1. compute a pseudo-reference sample: geometric mean across samples

Rg =

 N∏
j=1

Kgj


1/N

(geometric mean is less sensitive to extreme values than standard mean)
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Sample 2

2. center samples compared to the reference
3. compute normalization factor: median of centered counts over the genes
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Relative Log Expression (RLE)
Method:

1. compute a pseudo-reference sample
2. center samples compared to the reference

K̃gj =
Kgj

Rg
with Rg =

 N∏
j=1

Kgj


1/N
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3. compute normalization factor: median of centered counts over the genes
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Relative Log Expression (RLE)
Method:

1. compute a pseudo-reference sample
2. center samples compared to the reference
3. compute normalization factor: median of centered counts over the genes

s̃j = median
g

{
K̃gj

}
factors multiply to 1: sj =

s̃j

exp
(

1
N

∑N
l=1 log(s̃l)

)
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with

K̃gj =
Kgj

Rg

and

Rg =

 N∏
j=1

Kgj


1/N
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Relative Log Expression (RLE)
Method:

1. compute a pseudo-reference sample
2. center samples compared to the reference
3. compute normalization factor: median of centered counts over the genes
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## with edgeR
calcNormFactors(...,
method="RLE")

## with DESeq
estimateSizeFactors(...)
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Trimmed Mean of M-values (TMM)

Assumptions behind the method
▶ the total read count strongly depends on a few highly expressed genes
▶ most genes are not differentially expressed

−3
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−1

0
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2

−20 −15 −10 −5

A(j,r)

M
(j,

r)

Trimmed
 values
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Trimmed Mean of M-values (TMM)

Assumptions behind the method
▶ the total read count strongly depends on a few highly expressed genes
▶ most genes are not differentially expressed

Correction factors:

s̃j = 2TMM(j,r) factors multiply to 1: sj =
s̃j

exp
(

1
N

∑N
l=1 log(s̃l)

)
calcNormFactors(..., method="TMM")
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Comparison of the different approaches

Purpose of the comparison:
▶ finding the “best” method for all cases is not a realistic purpose

▶ find an approach which is robust enough to provide relevant results in all cases

▶ Method: comparison based on several criteria to select a method which is valid for
multiple objectives
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Comparison of the different approaches
Effect on count distribution:

RPKM and TC are very similar to raw data.
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Comparison of the different approaches
Effect on differential analysis (DESeq v. 1.6):

Inflated FPR for all methods except for TMM and DESeq (RLE).
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Comparison of the different approaches

Conclusion: Differences appear based on data characteristics

TMM and DESeq (RLE) are performant in a differential analysis context.
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Outline

Exploratory analysis
Introduction
Experimental design
Data exploration and quality assessment

Normalization
Raw data filtering
Interpreting read counts

Differential Expression analysis
Hypothesis testing and correction for multiple tests
Differential expression analysis for RNAseq data
Interpreting and improving the analysis

Biostatistique RNA-seq
Toulouse, 16-17 mai 2024 / NV2

p. 34



Part IV: Differential expression analysis
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Different steps in hypothesis testing
1. formulate an hypothesis H0:

H0: the average count for gene g in the control samples is the
same that the average count in the treated samples

which is tested against an alternative H1: the average count for gene g in the
control samples is different from the average count in the treated samples

2. from observations, compute a test statistics (e.g., the mean in the two samples)
3. find the theoretical distribution of the test statistics under H0

4. deduce the probability that the observations occur under H0: this is called the
p-value

5. conclude: if the p-value is low (usually below α = 5% as a convention), H0 is
unlikely: we say that “H0 is rejected”.
We have that: α = PH0

(H0 is rejected).
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Summary of the possible decisions

Do not reject H0 Reject H0
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Types of errors in tests

Reality

H0 is true H0 is false

D
ec

is
io

n Do not reject H0
Correct decision Type II error

, (True Negative) / (False Negative)

Reject H0
Type I error Correct decision

/ (False Positive) , (True Positive)

P(Type I error) = α (risk)

P(Type II error) = 1 − β ( β: power)
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Why performing a large number of tests might be a problem?
Framework: Suppose you are performing G tests at level α.

P(at least one FP if H0 is always true) = 1 − (1 − α)G

Ex: for α = 5% and G = 20, P(at least one FP if H0 is always true) ≃ 64%!!!

Probability to have at least one false positive versus the number of tests performed
when H0 is true for all G tests
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Notations for multiple tests
Number of decisions for G independent tests:

True null False null Total

hypotheses hypotheses

Not rejected G0 − U G1 − V G − R

Rejected U V R

Total G0 G1 G

Instead of the risk α, control:
▶ familywise error rate (FWER): FWER = P(U > 0) (i.e., probability to have at least

one false positive decision)
▶ false discovery rate (FDR): FDR = E(Q) with

Q =

 U/R if R > 0

0 otherwise
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Adjusted p-values
Settings: p-values p1, . . . , pG (e.g., corresponding to G tests on G different genes)

Adjusted p-values
adjusted p-values are p̃1, . . . , p̃G such that

Rejecting tests such that p̃g < α ⇐⇒ P(U > 0) ≤ α or E(Q) ≤ α

Computing p-values
1. order the p-values p(1) ≤ p(2) ≤ . . . ≤ p(G)

2. compute p̃(g) = agp(g)
▶ with Bonferroni method: ag = G (FWER)
▶ with Benjamini & Hochberg method: ag = G/g (FDR)

3. if adjusted p-values p̃(g) are larger than 1, correct p̃(g) ← min{p̃(g), 1}
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Adjusting p-values in practice

▶ compute adjusted p-values (Bonferroni or BH procedures for instance)

▶ select all genes for which this adjusted p-values is below 5% (for instance)

▶ this is equivalent to controlling either the probability to have at least one FP
(FWER) or the average proportion of FP (FDR)
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Fisher’s exact test for contingency tables
After normalization, one may build a contingency table like this one:

treated control Total

gene g ngA ngB ng

other genes NA − ngA NB − ngB N − ng

Total NA NB N

Question: is the number of reads of gene g in the treated sample significatively
different than in the control sample?

Method
Direct computation of the probability to obtain such a contingency table (or a “more
extreme” contingency table) with:
▶ independency between the two columns of the contingency tables;
▶ the same marginals (“Total”).
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Example of results obtained with the Fisher test
Genes declared significantly differentially expressed are in pink:
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Main remark: more conservative
for genes with a low expression

Limitation of Fisher test
Highly expressed genes have a very large variance! As Fisher test does not estimate
variance, it tends to detect false positives among highly expressed genes⇒ do not
use it!
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Basic principles of tests for count data: 2 conditions and
replicates
Notations: for gene g, K1

g1, ..., K1
gn1

(condition 1) and K2
g1, ..., K2

gn2
(condition 2)

▶ choose an appropriate distribution to model count data (discrete data,
overdispersion)

K k
gj ∼ NB(sk

j λgk , ϕg)

in which:
▶ sk

j is library correction factor of sample j in condition k
▶ λgk is the proportion of counts for gene g in condition k
▶ ϕg is the (over)dispersion (parameter) of gene g (supposed to be identical for all

samples)

▶ estimate its parameters for both conditions

λg1 λg2 ϕg

▶ conclude by computing p-value

⇒ Test

H0 : {λg1 = λg2}
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First method: Exact Negative Binomial test

2 conditions only

Normalization is performed to get equal size librairies⇒ s

The test is performed similarly as for Fisher test (exact probability is computed
according to NB distribution after parameters have been estimated)
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Estimating the dispersion parameter ϕg

Some methods:
▶ DESeq, DESeq2: ϕg is a smooth function of λg = λg1 = λg2

dge <- estimateDispersion(dge)
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▶ edgeR: estimate a common dispersion parameter for all genes and use it as a
prior in a Bayesian approach to estimate a gene specific dispersion parameter by
log-likelihood maximization
dge <- estimateDisp(dge)
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Perform the test

Some methods:
▶ DESeq, DESeq2: exact (DESeq) or approximate (Wald and LR in DESeq2) tests

res <- nbinomWaldTest(dge)
results(res)

res <- nbinomLR(dge)
results(res)

▶ edgeR: exact tests

res <- exactTest(dge)
topTags(res)

(comparison between methods in [Zhang et al., 2014])
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More complex experiments: GLM
Framework:

Kgj ∼ NB(µgj , ϕg) with log(µgj) = log(sj) + log(λgj)

in which:
▶ sj is the library size correction for sample j;

▶ log(λgj) is estimated (for instance) by a Generalized Linear Model (GLM):

log(λgj) = λ0 + x⊤j βg

in which xj is a vector of covariates.

GLM allows to decompose the effects on the mean of
▶ different factors
▶ their interactions
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More complex experiments: GLM
Framework:

Kgj ∼ NB(µgj , ϕg) with log(µgj) = log(sj) + log(λgj)

in which:
▶ sj is the library size correction for sample j;
▶ log(λgj) is estimated (for instance) by a Generalized Linear Model (GLM):

log(λgj) = λ0 + x⊤j βg

in which xj is a vector of covariates.

GLM allows to decompose the effects on the mean of
▶ different factors
▶ their interactions
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More complex experiments: GLM in practice

edgeR

dge <- estimateDisp(dge, design) # estimation of dispersion
fit <- glmFit(dge, design) # estimation of parameters
res <- glmLRT(fit, ...) # tests (likelihood ratio)
topTags(res)

DESeq, DESeq2

dge <- estimateDispersions(dge)
fit <- fitNbinomGLMs(dge, count ~ ...)
fit0 <- fitNbinomGLMs(dge, count ~ 1)
res <- nbinomGLMTest(fit, fit0)
p.adjust(res, method = "BH")
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Example

In an experiment, gene expression is influenced by:
▶ diets: A (reference diet) and B (another diet)
▶ genotypes: G (reference genotype), H (mutant 1), K (mutant 2)

The model with two additional effects writes:

log(λ) = β0︸︷︷︸
basal level for reference

+ β11diet B︸   ︷︷   ︸
additional expression for diet B

+

β21genotype H︸         ︷︷         ︸
additional expression for mutant 1

+ β31genotype K︸         ︷︷         ︸
additional expression for mutant 2

Tests:
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Example
In an experiment, gene expression is influenced by:
▶ diets: A (reference diet) and B (another diet)
▶ genotypes: G (reference genotype), H (mutant 1), K (mutant 2)

The model with two additional effects writes:

log(λ) = β0︸︷︷︸
basal level for reference

+ β11diet B︸   ︷︷   ︸
additional expression for diet B

+

β21genotype H︸         ︷︷         ︸
additional expression for mutant 1

+ β31genotype K︸         ︷︷         ︸
additional expression for mutant 2

Tests:
▶ Testing if the diet as an effet is equivalent to testing “β1 = 0” coef = 2 in glmLRT

of edgeR
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Example
In an experiment, gene expression is influenced by:
▶ diets: A (reference diet) and B (another diet)
▶ genotypes: G (reference genotype), H (mutant 1), K (mutant 2)

The model with two additional effects writes:

log(λ) = β0︸︷︷︸
basal level for reference

+ β11diet B︸   ︷︷   ︸
additional expression for diet B

+

β21genotype H︸         ︷︷         ︸
additional expression for mutant 1

+ β31genotype K︸         ︷︷         ︸
additional expression for mutant 2

Tests:
▶ Testing if genotype K has an expression different to genotype H is equivalent to

testing “β2 = β3” contrast = c(0,0,1,-1) in glmLRT of edgeR
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Example
In an experiment, gene expression is influenced by:
▶ diets: A (reference diet) and B (another diet)
▶ genotypes: G (reference genotype), H (mutant 1), K (mutant 2)

The model with two additional effects writes:

log(λ) = β0︸︷︷︸
basal level for reference

+ β11diet B︸   ︷︷   ︸
additional expression for diet B

+

β21genotype H︸         ︷︷         ︸
additional expression for mutant 1

+ β31genotype K︸         ︷︷         ︸
additional expression for mutant 2

Tests:
▶ Testing if the genotype has an effect is equivalent to testing the full model above

against the model log(λ) = β0 + β11diet B or testing β2 = β3 = 0 (coef = 3:4
glmLRT of edgeR)
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Contrasts

log(λ) = β0︸︷︷︸
basal level for reference

+ β11diet B︸   ︷︷   ︸
additional expression for diet B

+

β21genotype H︸         ︷︷         ︸
additional expression for mutant 1

+ β31genotype K︸         ︷︷         ︸
additional expression for mutant 2

testing if genotype K has an expression different to genotype H:

β0 β1 β2 β3

genotype K 1 0 0 1

− genotype H 1 0 1 0

⇒ contrast: 0 0 −1 1
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Contrasts

log(λ) = β0︸︷︷︸
basal level for reference

+ β11diet B︸   ︷︷   ︸
additional expression for diet B

+

β21genotype H︸         ︷︷         ︸
additional expression for mutant 1

+ β31genotype K︸         ︷︷         ︸
additional expression for mutant 2

testing if genotype K has an expression different to genotype H:

β0 β1 β2 β3

genotype K 1 0 0 1

− genotype H 1 0 1 0

⇒ contrast: 0 0 −1 1
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Example

In an experiment, gene expression is influenced by:
▶ leg: L1, L2, L3, L4
▶ type: pull, push

Biostatistique RNA-seq
Toulouse, 16-17 mai 2024 / NV2

p. 53



Example
In an experiment, gene expression is influenced by:
▶ leg: L1, L2, L3, L4
▶ type: pull, push

model.matrix(∼ type + leg)

β0 +β11L2 +β21L3 +β31L4 +γ1push
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Example
In an experiment, gene expression is influenced by:
▶ leg: L1, L2, L3, L4
▶ type: pull, push

with the interaction term

model.matrix(∼ type + leg +
type:leg)

β0 + β11push + β21L2 + β31L3 +
β41L4 + γ11push & L2 +
γ21push & L3γ21push & L4

Testing interaction: coef = 6:8
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Example
In an experiment, gene expression is influenced by:
▶ leg: L1, L2, L3, L4
▶ type: pull, push

equivalently, with group = leg × type

model.matrix(∼ 0 + group)

β11L1 & pull + β21L1 & push +
β31L2 & pull + β41L2 & push +
β51L3 & pull + β61L3 & push +
β71L4 & pull + β81L4 & push
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Alternative approach: linear model for count data
Basic idea:

1. data are transformed so that they are approximately normally distributed

tcount <- voom(counts, design)

2. a linear (Gaussian) model is fitted (with a Bayesian approach to improve FDR
[McCarthy and Smyth, 2009]):

K̃gj ∼ N(µgj , σ
2
g)

with
E(K̃gj) = β0 + x⊤j βg

fit <- lmFit(tcount, design)
fit <- eBayes(fit)
topTables(fit, ...)
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But never forget: correlation is not causality!

Spurious correlations: http://www.tylervigen.com/spurious-correlations
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... and be aware of the Simpson’s effect!
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Part V: Interpreting differential analysis results
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Overview of the results: MA-plot

plotMA(..., main="DESeq", ylim=c(-4,4))
plotMA(..., main="DESeq2", ylim=c(-4,4))
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(the last one includes a prior on log2 fold change which results in more moderated
estimates for low count genes)Biostatistique RNA-seq
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Overview of the results: MA-plot

plotSmear(..., de.tags = ...)
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Fold change and p-value: the Volcano plot
p-value versus fold change (both log scaled) scatterplot. Significant genes are in red:
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Gene clustering

Prior clustering: transform data to obtain counts with similar variance

▶ DESeq, DESeq2

varianceStabilizingTransformation(...)

▶ DESeq2

rlog(...)

▶ edgeR

cpm(..., prior.count=2, log=TRUE)
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Gene clustering
On transformed data, use e.g., heatmap:
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which is useful to visualize which genes are over/under-expressed in one condition.
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Standard property of usual DE analyses
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Remark: low read counts have a too large variance to be found differentially expressed.

Consequence: filtering out these genes before the DE analysis because it improves
the power of the test because of multiple test correction.
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Example
Filtering out the 40% genes that have the lowest overall counts does not affect much
low p-values:
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but leads to find new DE genes that were previously discarded by multiple test
correction.
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Filtering in practice

cdsFilt <- HTSFilter(..., plot=FALSE)$filteredData
res <- exactTest(cdsFilt)
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In summary... (with edgeR)

preparation of the design of the experiment

count data

sequencing

exploratory analysis (hist, boxplot...)

a DGEList object
creating an R object with count data (DGEList)

a DGEList object with normalization factors
normalization (calcNormFactors)

a DGEList object with dispersion estimates

fitting the model (estimateDisp)

a DGEList object without filtered genes
filtering low count genes (HTSFilter)

a DGEExact or DGELRT object exploratory analysis (topTags, plotSmear...)

test (exactTest or glmFit/glmLRT)
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